Skip to main content

Preparation of Haloalkanes

A halogen derivative of an alkane is called a Haloalkane, where the hydrogen is replaced with a halogen.

alkane to haloalkane

The common or the trivial name is Alkyl Halide.

A fun mnemonic to remember a few common preparation methods of haloalkane is hidden in the common name.

Mnemonic : AAAlkyl Halide (Alkane, Alkene, Alcohol, Halogen transfer)

The preparation of a haloalkane (or the alkyl halide) can be done from starting materials alkane, alkene, alcohol, and replacement of halogens by halogen transfer reactions.

Alkanes are very stable, inert molecules that undergo only a few reactions - cracking (breaking down a larger carbon chain into smaller carbon fragments), combustion (oxidation of an alkane to give carbon dioxide and water molecules), and free radical halogenation reactions (replacing Hydrogen of an alkane with halogen).

Here the preparation of haloalkane from alkane using free radical halogenation method will be covered. 

Preparation of Haloalkane from Alkanes- Free Radical Halogenation

General Reaction 

For free radical halogenation, an alkane is reacted with the halogen in the presence of a catalyst, UV light, or sunlight. In the absence of a light source, a very high-temperature condition of 520 K -670 K is used.

General Reaction alkane halogenation

Halogen Reactivity in Halogenation Reaction

The order of the halogen reactivity is-

F2 > Cl2 > Br2 > I2

Most halogenation reactions are done using Cl2 or Br2.  

Reactions with F2 are highly reactive, explosive, and hard to control.

In contrast, the reactions with I2 are very sluggish and reversible. Reversibility is due to the formation of by-product HI along with the desired iodoalkane.

iodination of alkane reversisble

One solution is to use an oxidizing agent such as - HNO3, HgO, etc., converts HI formed back to I2.  An increase in the I2 concentration pushes the reaction in the forward direction (according to the Le Chatelier principle) to obtain more iodoalkane. (Read why iodination of benzene is difficult)

Formation of polyhalogenated products- A serious concern

The halogenation reaction using Cl2 or Br2 gives a mixture of mono, di, and polyhalogenated products.

The number of products formed depends on the number and type of replaceable hydrogens.

For example, methane (CH4) has four hydrogens, and it can form four different (mono, di, tri, tetra) halogenated compounds. 

The maximum number of replaceable hydrogens for a slightly bigger carbon chain propane is eight. Therefore, there are twenty-two combinations of halogenated products that can be obtained in presence of excess halogen. 

The formation of polyhalogenated compounds can be avoided if the alkane ratio to the halogen is decreased (1: 0.8 ratio) so that only a few halogens are available per molecule of alkane. The primary product would then be a mono halogen compound.

For a molecule like propane with more than two types of hydrogens (a and b), the issue doesn’t just stop there. There again is a possibility of forming two types of monohalogenated products.

Remember that halogenation reaction with alkane goes via a free radical mechanism. A radical, an electron-deficient species, follows the stability order like the carbocations- 3o> 2o> 1o. Therefore, the major product will be the one where the radical formed before the attachment of the halogen is most stable.

For propane, 2o radical formed is more stable than 10 radical to giving 2-chloropropane as the major product. 1-chloropropane obtained from a less stable primary radical will be the minor product.

Also, note that 2-chloropropane and 1-chloropropane are positional isomers with close boiling points and would be hard to isolate. 

Another example to explain the correlation between the type of the hydrogen and most stable product formed is for isopentane -

Isopentane has four types of hydrogen. However, 30 radical is the most stable, and the product formed using that will be the major product.

Therefore, selective halogenation for an alkane without giving side products is a major hurdle in free radical reactions.

Selectivity is seen for allylic or benzylic compounds where monohalogenation alkane is the major product.

In summary, free-radical halogenation reactions are hard to control. A mixture of desired monosubstituted and polysubstituted products is formed, making the purification and isolation of the desired compound a tedious process. Therefore, free radical halogenation of alkane is not a preferred way to halogenate a compound.

For making a fluoro or an iodoalkane, halogen transfer reactions are preferred.

Related Reading:  Free radical - Introduction, Structure, and Types, Types of equivalent hydrogen, Identification of allylic and benzylic positionIdentification of 1o, 2o and 3o alkyl groups  

 

Practice Problems-

a) Identify the number of possible monobromo structural isomers expected to be formed on free radical monobromination of the following compounds (quiz)

b) Identify the number of dihalogen derivatives of the following compounds (quiz)

c) Predict the major product of free-radical bromination reaction (quiz)

 


Course on Introductory Organic Chemistry 



Introductory Organic Chemistry Course covers the fundamentals of organic chemistry in 13 detailed chapters –

  • Atoms

  • Bonding in Atoms

  • Covalent Bond 

  • Electronic Displacements in a Covalent Bond 

  • Common Reaction Types 

  • Drawing Organic Structures 

  • Functional Groups 

  • Structural Isomerism 

  • Intermolecular Forces 

  • Physical Properties 

  • Fundamentals of Organic Reactions 

  • Reactive Intermediates 

The course simplifies the language of Organic Chemistry with pictures, metaphors, and common words that anyone can understand.

It is a detailed, handy primer for building a strong foundation in Organic Chemistry.

Subscribers Only Premium Tutorials

What is Organic Chemistry?

  • Introduction
  • Elements of a Chemical Reaction
  • Components of a Chemical Reaction

     Get Organic Chemistry

Atom

  • Size of an atom- The world belongs to the tiniest!
  • Power of Protons
  • Mass Number
  • Average Atomic Mass
  • Molecule and Molecular Mass
  • The Electrons- An Atom’s Reactive Component
  • Atomic Orbitals- s, p, d, f
  • Filing of Atomic Orbitals and Writing Electronic Configuration
  • Valence and Core Electrons- How to Determine

     Get Atom

Bonding In Atoms

  • Octet Rule- Introduction and Bonding
  • Limitations of Octet Rule
  • Ionic Bond- Introduction and Formation
  • Formation of Ionic Compound
  • Requirements for Ionic Bonding
  • Appearance and Nature of Ionic Compounds
  • Physical Properties of Ionic Solids- Conductance, Solubility, Melting Point, and Boiling Point
  • Covalent Bond - How it Forms
  • Covalent Bond - Why it Forms?
  • Covalent Bond- Bond Pair (Single, Double, Triple) and Lone Pair
  • Number of Covalent Bonds- Valency
  • Types of Covalent Bonds- Polar and Nonpolar
  • Metallic Bonds- Introduction and Nature
  • Significance of Metallic Bonding
  • Impact of Metallic Bonding on the Physical Properties
  • Applications of Metallic Bonding
  • Difference Between Metallic and Ionic Bond

     Get Bonding in Atoms

Covalent Bond

  • Theories on Covalent Bond Formation
  • Valence Bond Theory- Introduction and Covalent Bond Formation
  • Valence Bond Theory- Types of Orbital Overlap Forming Covalent Bonds
  • Applications, Limitations, and Extensions of Valence Bond Theory
  • Hybridization- Introduction and Types
  • sp3 Hybridization of Carbon, Nitrogen, and Oxygen
  • sp2 Hybridization of Carbon, Carbocation, Nitrogen, and Oxygen
  • sp Hybridization of Carbon and Nitrogen
  • Shortcut to Determine Hybridization
  • VSEPR Theory- Introduction
  • Difference between Electron Pair Geometry and Molecular Structure
  • Finding Electron Pair Geometry and Related Shape
  • Predicting Electron-Pair Geometry and Molecular Structure Guideline
  • Predicting Electron pair geometry and Molecular structure - Examples
  • Finding Electron-Pair Geometry and Shape in Multicentre Molecules
  • Drawbacks of VSEPR Theory
  • Covalent bond Characteristics- Bond length
  • Factors affecting Bond Length
  • How does Electron delocalization (Resonance) affect the Bond length?
  • Covalent bond Characteristics- Bond Angle
  • Factors affecting Bond Angle
  • Covalent bond Characteristics- Bond Order
  • How Bond Order Corresponds to the Bond Strength and Bond Length
  • Solved Examples of Bond Order Calculations
  • Covalent Bond Rotation
  • Covalent Bond Breakage
  • Covalent Bond Properties -Physical State, Melting and Boiling Points, Electrical Conductivity, Solubility, Isomerism, Non-ionic Reactions Rate, Crystal structure

     Get Covalent Bond

Electronic Displacement in a Covalent Bond

  • Electronegativity- Introduction
  • Factors Affecting Electronegativity- Atomic number, Atomic size, Shielding effect
  • Factors Affecting Electronegativity-s-orbitals, Oxidation state, Group electronegativity
  • Application of Electronegativity in Organic Chemistry
  • Physical Properties Affected by Electronegativity
  • Inductive effect- Introduction, Types, Classification, and Representation
  • Factors Affecting Inductive Effect- Electronegativity
  • Factors Affecting Inductive Effect- Bonding Order and Charge
  • Factors Affecting Inductive Effect- Bonding Position 
  • Application of Inductive Effect- Acidity Enhancement and Stabilization of the counter ion due to -I effect 
  • Application of Inductive Effect-Basicity enhancement and stabilization of the counter ion due to +I effect
  • Application of Inductive Effect-Stability of the Transition States
  • Application of Inductive Effect-Elevated Physical Properties of Polar Compounds
  • Is the Inductive Effect the same as Electronegativity?
  • Resonance- Introduction and Electron Delocalization 
  • Partial Double Bond Character and Resonance Hybrid
  • Resonance Energy
  • Significance of Planarity and Conjugation in Resonance
  • p-orbital Electron Delocalization in Resonance
  • Sigma Electron Delocalization (Hyperconjugation)
  • Significance of Hyperconjugation
  • Resonance Effect and Types
  • Structure Drawing Rules of Resonance (Includes Summary)
  • Application of Resonance
  • Introduction to Covalent Bond Polarity and Dipole Moment
  • Molecular Dipole Moment
  • Lone Pair in Molecular Dipole Moment
  • Applications of Dipole Moment
  • Formal Charges- Introduction and Basics
  • How to Calculate Formal Charges (With Solved Examples)
  • Difference between Formal charges and Oxidation State

     Get Electronic Displacements in a Covalent Bond

Common Types of Reactions

  • Classification of common reactions based on mechanisms
  • Addition Reactions
  • Elimination Reactions (E1, E2, E1cb)
  • Substitutions (SN1, SN2, SNAr, Electrophilic, Nucleophilic)
  • Decomposition
  • Rearrangement
  • Oxidation-Reduction

     Get Common Types of Reactions

Drawing Organic Structures

  • Introduction
  • Kekulé
  • Condensed
  • Skeletal or Bond line
  • Polygon formula
  • Lewis Structures- What are Lewis structures and How to Draw
  • Rules to Draw Lewis structures- With Solved Examples
  • Lewis structures- Solved Examples, Neutral molecules, Anions, and Cations
  • Limitation of Lewis structures
  • 3D structure representation- Dash and Wedge line
  • Molecular models for organic structure representation- Stick model, Ball-stick, and Space-filling
  • Molecular Formula

     Get Drawing Organic Structures

Functional Groups in Organic Chemistry

  • What are functional groups? 
  • Chemical and Physical Properties affected by the Functional Groups
  • Identifying Functional Groups by name and structure
  • Functional Group Categorization- Exclusively Carbon-containing Functional Groups
  • Functional Group Categorization- Functional Groups with Carbon-Heteroatom Single Bond
  • Functional Group Categorization- Functional Groups with Carbon-Heteroatom Multiple Bonds
  • Rules for IUPAC nomenclature of Polyfunctional Compounds
  • Examples of polyfunctional compounds named according to the priority order
  • Examples of reactions wherein the functional group undergoes transformations

     Get Functional Groups in Organic Chemistry

Structural Isomerism

  • Introduction
  • Chain Isomerism
  • Position Isomerism
  • Functional Isomerism
  • Tautomerism
  • Metamerism
  • Ring-Chain Isomerism

     Get Structural Isomerism

Intermolecular Forces

  • Ion-Dipole Interactions-Introduction and Occurrence
  • Factors Affecting the Ion-Dipole Strength
  • Importance of Ion-Dipole Interactions
  • Ion-Induced Dipole- Introduction, Strength and Occurrence
  • Factors Affecting the Strength of Ion-Induced Dipole Interactions
  • Ion-Induce Dipole Interactions in Polar Molecules
  • Vander Waals Forces -Introduction
  • Examples of Vander Waals' forces
  • Vander Waals Debye (Polar-Nonpolar) Interactions
  • Factors affecting the Strength of Debye Forces
  • Vander Waals Keesom Force- Introduction, Occurrence and Strength
  • Vander Waals London Forces- Introduction, Occurrence, And Importance
  • Factors Affecting the Strength of London Dispersion Forces- Atomic size and Shape
  • Introduction, Occurrence and Donor, Acceptors of Hydrogen Bond
  • Hydrogen bond Strength, Significance and Types
  • Factors Affecting Hydrogen Bond Strength
  • Impact of Hydrogen bonding on Physical Properties- Melting and boiling point, Solubility, and State
  • Calculation of the Number of Hydrogen Bonds and Hydrogen bond Detection

     Get Intermolecular Forces

Physical Properties

  • Physical Properties- Introduction, Role of Intermolecular Forces
  • Physical State Change-Melting Point
  • Role of Symmetry, Role of Carbon numbers, Role of Geometry
  • Physical State Change-Boiling Point
  • Intermolecular Forces and their Effect on the Boiling Point, Role of Molecular Weight (Size), Molecular Shape, Polarity
  • Boiling Point of Special Compounds- Amino acids, Carbohydrates, Fluoro compounds
  • Solubility in Water
  • Density

     Get Physical Properties

Fundamentals of Organic Reactions

  • Types of Arrows Used in Chemistry
  • Curved Arrows in Organic Chemistry- with Examples
  • Electrophiles- Introduction, Identification and Reaction
  • Formation and Classification of Electrophiles- Neutral and Charged 
  • Difference between Electrophiles and Lewis Acids
  • Nucleophile- Identification and Role in a Reaction
  • Types of Nucleophiles- Lone Pair
  • Types of Nucleophiles- Pie Bond
  • Types of Nucleophiles- Sigma Bond
  • Periodic Trend and Order in Nucleophilicity
  • Introduction to Reactions Involving Nucleophiles
  • Nucleophile Reactions- Aliphatic Displacement type - SN1, SN2
  • Nucleophile Reactions- Acyl Displacement type
  • Nucleophile reactions- Aromatic Displacement type- Electrophilic, Nucleophilic
  • Addition Reactions- Electrophilic, Nucleophilic, and Acyl
  • Ambident Nucleophiles- Introduction and Formation 
  • Ambident Nucleophile - Nature of the Substrate
  • Ambident Nucleophile- Influence of the Positive Counter Ions
  • Ambident Nucleophile- Effect of Solvent 
  • Lone Pair - Introduction and Formation
  • Physical Properties Affected by the Lone Pair- Shape and Bond Angle
  • Physical Properties Affected by the Lone Pair- Hydrogen Bonding
  • Physical Properties Affected by the Lone Pair- Polarity and Dipole Moment
  • Chemical property affected by the Lone pair- Nucleophilicity
  • Leaving Group- Introduction and Nature
  • Good and Bad Leaving Group
  • Factors Determining Stability of the Leaving Groups- Electronegativity, Size, Resonance Stability
  • Using pKa as a Measure of Leaving Group Ability
  • Leaving Groups in Displacement Reactions
  • Leaving Groups in Elimination Reactions

     Get Fundamentals of Organic Reactions

Reactive Intermediates

  • Carbocation- Introduction, Nature, and Types
  • Formation of Carbocation
  • Stability of Carbocations- Inductive, Resonance, and Hyperconjugation
  • Other Structural Features Increasing Carbocation Stability
  • Structural Feature Decreasing Carbocation Stability
  • Fate of the Carbocation
  • General Carbocation Formation Reactions
  • Carbanion- Introduction, Nature, and Types
  • Formation of Carbanions
  • Carbanion Stabilization
  • Ease of Formation of Carbanion -Acidic proton
  • Fate of the Carbanion
  • Free Radical- Introduction and Types of Carbon-Centred Radicals
  • Structure of Carbon-Centred Free Radical
  • Formation of Radicals
  • Stability of the Carbon-Centred Radicals
  • Other Structural Feature Increasing Free Radical Stability
  • Comparing Free Radical Stability using Dissociation energies (D-H) 
  • Fate of Free Radicals
  • Common Reactions Involving Carbon-Free Radicals

     Get Reactive Intermediates