Skip to main content

Ionic Bond in Chemistry

Introduction to Ionic Bonding

A charge-containing atom is called an ion.

The charges are formed when an atom gains or loses electrons. When an atom gains electrons, the extra electrons are shown as a negative charge. And, if an atom loses its electrons, the loss is expressed with a positive charge on the atom.

How an ionic bond is formed?

The electrostatic attraction of the oppositely charged ions creates a chemical bond known as the ionic bond. In other words, ions create an ionic bond.

how ions attract to form ionic bond

The strong electrostatic attraction holds these oppositely charged ions firmly in place and requires between 400-4000 kJ/mole of energy to separate them into gaseous atoms.

To understand the mightiness of the force involved, imagine a regular table salt that is so stable and unreactive at normal room temperature. The salt is Sodium Chloride (NaCl) made of oppositely charged ions, Na+ and Cl- held strongly by the ionic bond. The solid NaCl requires a very high temperature of 800 0C to convert to a molten state. To put things in perspective, a pot of water or sunflower oil boil at 100 o and 227 oC, and salt melts at much, much higher temperature.

The lattices are only broken at the melting point temperature of 800 oC. However, to further separate the ions into parent elements, sodium metal, and Cl2 gas requires electrical energy to be passed through the molten solution. Such a strong bond between ions Na and Cl is the best example of the nature of an ionic bond.

The ionic bond is also known as an electrovalent bond.

How does an ionic bond form?

An ionic bond is one of the two ways (the other is a covalent bond) by which atoms attain stable noble gas configuration by a rule known as the octet rule.

In an ionic bond, the atoms reach the noble gas configuration by transferring electrons from one atom to another.

If an atom (a metal) loses an electron, it has more protons in its nucleus than the electrons in the shell, causing imbalances in the equal ratio of the atom's positive and negative charges.

The atom becomes positively charged ion and is called a cation (mnemonic- the t in cation looks slightly like a + sign indicating a positively charged ion). The number of electrons lost is written in the superscript with the corresponding positive charge. Example, Na+, Mg2+ etc.

What are cations? How are cations formed?

The electrons lost by the cation are picked up by another atom (a nonmetal) that is willing to accommodate the extra electrons in its shell.

And post the uptake, the atom now has more electrons in its shell than protons in its nucleus. Once again, there is an imbalance between the positive and the negative charges, with extra electrons than the nuclear protons. Such an atom is denoted with a negative charge and is called an anion (mnemonic- anion has an n for a negative charge). The number of electrons an atom accepts is written in the superscript with the corresponding negative charge- for example, Cl-, O2- etc.

What are anions? How are anions formed?

The anions and the cations are stable due to attaining their corresponding inert gas electron configuration.

For example, lithium has an electron in excess from the nearest Helium gas configuration, and Fluorine has one electron less than the Neon configuration.

Which elements engage in ionic bonding?

Lithium can easily lose its valence electron, Fluorine can gain one, and the transfer of one electron gives both a noble gas configuration. The ions formed can electrostatically interact and create the ionic compound Lithium Fluoride (LiF) by an ionic bond.

formation of ionic compound Lithium Fluoride

Another example is of ionic compound MgCl2. Mg loses two electrons to reach a stable Neon gas configuration. The Chlorine atoms pick the two electrons to attain the Argon gas configuration.

Formation of ionic compound Magnesium Chloride

Once the negatively charged ion balances the positively charged ion such that the number of electrons lost and gained remains in correct stoichiometric quantities, an ionic bond is formed. Once combined, a large amount of energy is released, known as lattice energy.

Ionic bonding phenomena form a large crystal lattice, a regular, repeating arrangement of the ions in a 3-dimensional space, rather than forming individual molecules like covalent bonding. The positive ions are tightly packed with the negative ions in various cubic and hexagonal lattice arrangements in the solid state. 

According to its size or radius, a cation can attract multiple anions and vice versa to create a regular, continuous geometric lattice pattern. Stronger ionic bonds result in stronger crystalline solid lattices reflecting the ionic compound's higher stability. The ionic compound's crystal lattice stability is measured in lattice enthalpy values. The greater value corresponds to a stronger, tighter lattice.

Therefore, ionic bonding is common in inorganic compounds but relatively uncommon in organic compounds.

 


Get Premium Chemistry Tutorials



About the chapter - Bonding in Atoms

Octet Rule determines Ionic and Covalent Bonds. The chapter offers in-depth coverage of the rule and demonstrates how to assess bonding in atoms by analyzing the nature, formation, requirement, types, number, and other bond-related properties. The chapter ends with metallic bonding, its nature, significance, and application, with a complete overview of the difference between various bond types.

Subscribers Only Premium Tutorials

What is Organic Chemistry?

  • Introduction
  • Elements of a Chemical Reaction
  • Components of a Chemical Reaction

     Get Organic Chemistry

Atom

  • Size of an atom- The world belongs to the tiniest!
  • Power of Protons
  • Mass Number
  • Average Atomic Mass
  • Molecule and Molecular Mass
  • The Electrons- An Atom’s Reactive Component
  • Atomic Orbitals- s, p, d, f
  • Filing of Atomic Orbitals and Writing Electronic Configuration
  • Valence and Core Electrons- How to Determine

     Get Atom

Bonding In Atoms

  • Octet Rule- Introduction and Bonding
  • Limitations of Octet Rule
  • Ionic Bond- Introduction and Formation
  • Formation of Ionic Compound
  • Requirements for Ionic Bonding
  • Appearance and Nature of Ionic Compounds
  • Physical Properties of Ionic Solids- Conductance, Solubility, Melting Point, and Boiling Point
  • Covalent Bond - How it Forms
  • Covalent Bond - Why it Forms?
  • Covalent Bond- Bond Pair (Single, Double, Triple) and Lone Pair
  • Number of Covalent Bonds- Valency
  • Types of Covalent Bonds- Polar and Nonpolar
  • Metallic Bonds- Introduction and Nature
  • Significance of Metallic Bonding
  • Impact of Metallic Bonding on the Physical Properties
  • Applications of Metallic Bonding
  • Difference Between Metallic and Ionic Bond

     Get Bonding in Atoms

Covalent Bond

  • Theories on Covalent Bond Formation
  • Valence Bond Theory- Introduction and Covalent Bond Formation
  • Valence Bond Theory- Types of Orbital Overlap Forming Covalent Bonds
  • Applications, Limitations, and Extensions of Valence Bond Theory
  • Hybridization- Introduction and Types
  • sp3 Hybridization of Carbon, Nitrogen, and Oxygen
  • sp2 Hybridization of Carbon, Carbocation, Nitrogen, and Oxygen
  • sp Hybridization of Carbon and Nitrogen
  • Shortcut to Determine Hybridization
  • VSEPR Theory- Introduction
  • Difference between Electron Pair Geometry and Molecular Structure
  • Finding Electron Pair Geometry and Related Shape
  • Predicting Electron-Pair Geometry and Molecular Structure Guideline
  • Predicting Electron pair geometry and Molecular structure - Examples
  • Finding Electron-Pair Geometry and Shape in Multicentre Molecules
  • Drawbacks of VSEPR Theory
  • Covalent bond Characteristics- Bond length
  • Factors affecting Bond Length
  • How does Electron delocalization (Resonance) affect the Bond length?
  • Covalent bond Characteristics- Bond Angle
  • Factors affecting Bond Angle
  • Covalent bond Characteristics- Bond Order
  • How Bond Order Corresponds to the Bond Strength and Bond Length
  • Solved Examples of Bond Order Calculations
  • Covalent Bond Rotation
  • Covalent Bond Breakage
  • Covalent Bond Properties -Physical State, Melting and Boiling Points, Electrical Conductivity, Solubility, Isomerism, Non-ionic Reactions Rate, Crystal structure

     Get Covalent Bond

Electronic Displacement in a Covalent Bond

  • Electronegativity- Introduction
  • Factors Affecting Electronegativity- Atomic number, Atomic size, Shielding effect
  • Factors Affecting Electronegativity-s-orbitals, Oxidation state, Group electronegativity
  • Application of Electronegativity in Organic Chemistry
  • Physical Properties Affected by Electronegativity
  • Inductive effect- Introduction, Types, Classification, and Representation
  • Factors Affecting Inductive Effect- Electronegativity
  • Factors Affecting Inductive Effect- Bonding Order and Charge
  • Factors Affecting Inductive Effect- Bonding Position 
  • Application of Inductive Effect- Acidity Enhancement and Stabilization of the counter ion due to -I effect 
  • Application of Inductive Effect-Basicity enhancement and stabilization of the counter ion due to +I effect
  • Application of Inductive Effect-Stability of the Transition States
  • Application of Inductive Effect-Elevated Physical Properties of Polar Compounds
  • Is the Inductive Effect the same as Electronegativity?
  • Resonance- Introduction and Electron Delocalization 
  • Partial Double Bond Character and Resonance Hybrid
  • Resonance Energy
  • Significance of Planarity and Conjugation in Resonance
  • p-orbital Electron Delocalization in Resonance
  • Sigma Electron Delocalization (Hyperconjugation)
  • Significance of Hyperconjugation
  • Resonance Effect and Types
  • Structure Drawing Rules of Resonance (Includes Summary)
  • Application of Resonance
  • Introduction to Covalent Bond Polarity and Dipole Moment
  • Molecular Dipole Moment
  • Lone Pair in Molecular Dipole Moment
  • Applications of Dipole Moment
  • Formal Charges- Introduction and Basics
  • How to Calculate Formal Charges (With Solved Examples)
  • Difference between Formal charges and Oxidation State

     Get Electronic Displacements in a Covalent Bond

Common Types of Reactions

  • Classification of common reactions based on mechanisms
  • Addition Reactions
  • Elimination Reactions (E1, E2, E1cb)
  • Substitutions (SN1, SN2, SNAr, Electrophilic, Nucleophilic)
  • Decomposition
  • Rearrangement
  • Oxidation-Reduction

     Get Common Types of Reactions

Drawing Organic Structures

  • Introduction
  • Kekulé
  • Condensed
  • Skeletal or Bond line
  • Polygon formula
  • Lewis Structures- What are Lewis structures and How to Draw
  • Rules to Draw Lewis structures- With Solved Examples
  • Lewis structures- Solved Examples, Neutral molecules, Anions, and Cations
  • Limitation of Lewis structures
  • 3D structure representation- Dash and Wedge line
  • Molecular models for organic structure representation- Stick model, Ball-stick, and Space-filling
  • Molecular Formula

     Get Drawing Organic Structures

Functional Groups in Organic Chemistry

  • What are functional groups? 
  • Chemical and Physical Properties affected by the Functional Groups
  • Identifying Functional Groups by name and structure
  • Functional Group Categorization- Exclusively Carbon-containing Functional Groups
  • Functional Group Categorization- Functional Groups with Carbon-Heteroatom Single Bond
  • Functional Group Categorization- Functional Groups with Carbon-Heteroatom Multiple Bonds
  • Rules for IUPAC nomenclature of Polyfunctional Compounds
  • Examples of polyfunctional compounds named according to the priority order
  • Examples of reactions wherein the functional group undergoes transformations

     Get Functional Groups in Organic Chemistry

Structural Isomerism

  • Introduction
  • Chain Isomerism
  • Position Isomerism
  • Functional Isomerism
  • Tautomerism
  • Metamerism
  • Ring-Chain Isomerism

     Get Structural Isomerism

Intermolecular Forces

  • Ion-Dipole Interactions-Introduction and Occurrence
  • Factors Affecting the Ion-Dipole Strength
  • Importance of Ion-Dipole Interactions
  • Ion-Induced Dipole- Introduction, Strength and Occurrence
  • Factors Affecting the Strength of Ion-Induced Dipole Interactions
  • Ion-Induce Dipole Interactions in Polar Molecules
  • Vander Waals Forces -Introduction
  • Examples of Vander Waals' forces
  • Vander Waals Debye (Polar-Nonpolar) Interactions
  • Factors affecting the Strength of Debye Forces
  • Vander Waals Keesom Force- Introduction, Occurrence and Strength
  • Vander Waals London Forces- Introduction, Occurrence, And Importance
  • Factors Affecting the Strength of London Dispersion Forces- Atomic size and Shape
  • Introduction, Occurrence and Donor, Acceptors of Hydrogen Bond
  • Hydrogen bond Strength, Significance and Types
  • Factors Affecting Hydrogen Bond Strength
  • Impact of Hydrogen bonding on Physical Properties- Melting and boiling point, Solubility, and State
  • Calculation of the Number of Hydrogen Bonds and Hydrogen bond Detection

     Get Intermolecular Forces

Physical Properties

  • Physical Properties- Introduction, Role of Intermolecular Forces
  • Physical State Change-Melting Point
  • Role of Symmetry, Role of Carbon numbers, Role of Geometry
  • Physical State Change-Boiling Point
  • Intermolecular Forces and their Effect on the Boiling Point, Role of Molecular Weight (Size), Molecular Shape, Polarity
  • Boiling Point of Special Compounds- Amino acids, Carbohydrates, Fluoro compounds
  • Solubility in Water
  • Density

     Get Physical Properties

Fundamentals of Organic Reactions

  • Types of Arrows Used in Chemistry
  • Curved Arrows in Organic Chemistry- with Examples
  • Electrophiles- Introduction, Identification and Reaction
  • Formation and Classification of Electrophiles- Neutral and Charged 
  • Difference between Electrophiles and Lewis Acids
  • Nucleophile- Identification and Role in a Reaction
  • Types of Nucleophiles- Lone Pair
  • Types of Nucleophiles- Pie Bond
  • Types of Nucleophiles- Sigma Bond
  • Periodic Trend and Order in Nucleophilicity
  • Introduction to Reactions Involving Nucleophiles
  • Nucleophile Reactions- Aliphatic Displacement type - SN1, SN2
  • Nucleophile Reactions- Acyl Displacement type
  • Nucleophile reactions- Aromatic Displacement type- Electrophilic, Nucleophilic
  • Addition Reactions- Electrophilic, Nucleophilic, and Acyl
  • Ambident Nucleophiles- Introduction and Formation 
  • Ambident Nucleophile - Nature of the Substrate
  • Ambident Nucleophile- Influence of the Positive Counter Ions
  • Ambident Nucleophile- Effect of Solvent 
  • Lone Pair - Introduction and Formation
  • Physical Properties Affected by the Lone Pair- Shape and Bond Angle
  • Physical Properties Affected by the Lone Pair- Hydrogen Bonding
  • Physical Properties Affected by the Lone Pair- Polarity and Dipole Moment
  • Chemical property affected by the Lone pair- Nucleophilicity
  • Leaving Group- Introduction and Nature
  • Good and Bad Leaving Group
  • Factors Determining Stability of the Leaving Groups- Electronegativity, Size, Resonance Stability
  • Using pKa as a Measure of Leaving Group Ability
  • Leaving Groups in Displacement Reactions
  • Leaving Groups in Elimination Reactions

     Get Fundamentals of Organic Reactions

Reactive Intermediates

  • Carbocation- Introduction, Nature, and Types
  • Formation of Carbocation
  • Stability of Carbocations- Inductive, Resonance, and Hyperconjugation
  • Other Structural Features Increasing Carbocation Stability
  • Structural Feature Decreasing Carbocation Stability
  • Fate of the Carbocation
  • General Carbocation Formation Reactions
  • Carbanion- Introduction, Nature, and Types
  • Formation of Carbanions
  • Carbanion Stabilization
  • Ease of Formation of Carbanion -Acidic proton
  • Fate of the Carbanion
  • Free Radical- Introduction and Types of Carbon-Centred Radicals
  • Structure of Carbon-Centred Free Radical
  • Formation of Radicals
  • Stability of the Carbon-Centred Radicals
  • Other Structural Feature Increasing Free Radical Stability
  • Comparing Free Radical Stability using Dissociation energies (D-H) 
  • Fate of Free Radicals
  • Common Reactions Involving Carbon-Free Radicals

     Get Reactive Intermediates